Math 245B Lecture 3 Notes

Daniel Raban

January 11, 2019

1 Pointwise Convergence, Countability Axioms, Continuity, and Weak Topologies

1.1 The topology of pointwise convergence

Last time we had the following example of a topology.

Example 1.1. Let $F \subseteq \mathbb{R}^{\mathbb{R}}$, for example, $f = C(\mathbb{R})$. For every $m \in \mathbb{N}$, $t_1, \ldots, t_m \in \mathbb{R}$, $x_1, \ldots, x_m \in \mathbb{R}$, and $\varepsilon > 0$, define $U(t_1, \ldots, t_m, x_1, \ldots, x_m, \varepsilon) := \{f \in F : |x_i - f(t_i)| < \varepsilon \forall i \leq m\}$. Let \mathcal{E} be the set of all such $U(t_1, \ldots, t_m, x_1, \ldots, x_m, \varepsilon)$. We claim that if $(f_n)_{n \in \mathbb{N}}$ is a sequence in F, then $f_n \to f$ in $\mathcal{T}(\mathcal{E})$ iff $f_n \to f$ pointwise. Next time, we will show that this topology is not defined by a metric.

Proposition 1.1. \mathcal{E} is a base for \mathcal{T} .

Proof. We need to check two properties:

- 1. First, we need $\bigcup \mathcal{E} = F$. Given $f \in F$ and $t_1, \ldots, t_m \in \mathbb{R}$, let $x_i = f(t_i)$. Then $f \in U(t_1, \ldots, t_m, x_1, \ldots, x_m, \varepsilon)$ for all $\varepsilon > 0$.
- 2. Let $U(t_1, \ldots, t_m, x_1, \ldots, x_m, \varepsilon), U(s_1, \ldots, s_n, y_1, \ldots, y_n, \delta) \in \mathcal{E}$. Consider f in their intersection. Choose η so smal that $(f(t_i) \eta, f(t_i) + \eta) \subseteq (x_i \varepsilon, x_i + \varepsilon)$ for all i and same for δ . Now $f \in U(t 1, \ldots, t_m, s_1, \ldots, s_n, f(t_1), \ldots, f(t_m), f(s_1), \ldots, f(s_n), \eta)$, which is contained in the intersection of the first two sets. \Box

Proposition 1.2. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in F. Then $f_n \to f$ in \mathcal{T} iff $f_n \to f$ pointwise.

Proof. (\implies): Pick $t \in \mathbb{R}$ and $\varepsilon > 0$. Consider $U(t, f(t), \varepsilon)$. There exists n_0 such that $f_n \in U(t, f(t), \varepsilon)$ for all $n \ge n_0$; i.e. $|f(t) - f_n(t)| < \varepsilon$ for all $n \ge n_0$.

 (\Leftarrow) : Let $f \in F$, and let U be a neighborhood of f. Because \mathcal{E} is a base, there exists $U(t_1, \ldots, t_m, x_1, \ldots, x_m, \varepsilon) \subseteq U$ containing f. By shrinking ε if necessary, we may assume that $x_i = f(t_i)$ for every i. We know that $f_n(t_i) \to f(t_i)$. There exists n_0 such that for all $n \geq n_0$, $|f_n(t_i) - f(t_i)| < \varepsilon$ for all $i \leq m$; i.e. $f_n \in U(t_1, \ldots, t_m, x_1, \ldots, x_m, \varepsilon)$. \Box

1.2 Countability axioms and metrizability

Definition 1.1. A topology \mathcal{T} on X is **metrizable** if it is generated by a metric on X.

There are natural and important topologies that are not metrizable. This is why we care about point set topology.

Definition 1.2. A topological space (X, \mathcal{T}) is first countable at x if it has a countable base at x. The space is first countable if it is first countable at every x.

Definition 1.3. A topological space (X, \mathcal{T}) is **second countable** if it has a countable base.

Definition 1.4. A topological space (X, \mathcal{T}) is **separable** if it has a countable dense subset.

Lemma 1.1. A metrizable space is first countable.

Proof. Let ρ generate \mathcal{T} . Fix $x \in X$. The collection $\{B(x,r) : r > 0, r \in \mathbb{Q}\}$ is a neighborhood base at x.

Lemma 1.2. The topology of pointwise convergence on $\mathbb{R}^{\mathbb{R}}$ is not first countable.

Proof. Suppose U_1, U_2, \ldots contain $f \in \mathbb{R}^{\mathbb{R}}$. We may replace if necessary so that $U_j = U(t_1^{(j)}, \ldots, t_m^{(j)}, x_1^{(j)}, \ldots, x_m^{(j)}, \varepsilon_j)$. Pick $\varepsilon \neq \infty$, and pick $t \in \mathbb{R} \setminus \{t_i^{(j)} : g \ge 1, i = 1, \ldots, m_j\}$. Then $U(t, f(t), \varepsilon)$ is not contained in $U(t_1^{(j)}, \ldots, t_m^{(j)}, x_1^{(j)}, \ldots, x_m^{(j)}, \varepsilon_j)$ for all j. \Box

Corollary 1.1. The topology of pointwise convergence is not metrizable.

1.3 Continuous functions

Definition 1.5. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $f : X \to Y$. The function f is **continuous at** x if for every neighborhoddo f V of f(x), there exists a neighborhood U of x such that $f[U] \subseteq V$. f is **continuous** if it is continuous at every point.

Proposition 1.3. $f: X \to Y$ is continuous if and only if $f^{-1}[U] \in \mathcal{T}_X$ for every $U \in \mathcal{T}_Y$.

Proof. The same proof from metric spaces works here.

Proposition 1.4. If $\mathcal{T}_Y = \mathcal{T}(\mathcal{E})$, then $f : X \to Y$ is continuous if and only if $f^{-1}[U] \in \mathcal{T}_X$ for all $U \in \mathcal{E}$.

Proof. The proof is the same as for the analogous statement for σ -algebras and measurable functions.

Definition 1.6. Let $K = \mathbb{R}$ or \mathbb{C} , and let (X, \mathcal{T}) be a topological space. Then B(X, K) is the set of all **bounded functions** $f : X \to K$. C(X, K) is the set of all **continuous functions** $f : X \to K$. $BC(X, K) = B(X, K) \cap C(X, K)$ is the set of **bounded continuous** functions.

Definition 1.7. On B(X, K) or BC(X, K), the **uniform norm** is $||f||_u := \sup_{x \in X} |f(x)|$, and the **uniform metric** is $\rho_u(f, g) := ||f - g||_u$.

Proposition 1.5. BC(X, K) is complete with the metric ρ_u .

1.4 The weak and product topologies

Definition 1.8. Let X be a set, let $((Y_{\alpha}, \mathcal{T}_{\alpha}))_{\alpha \in A}$ be topological spaces, and let $f_{\alpha} : X \to Y_{\alpha}$ for all $\alpha \in A$. The **weak topology** generated by the f_{α} is $\mathcal{T}(\bigcup_{\alpha \in A} \{f_{\alpha}^{-1}[U] : U \in \mathcal{T}_{\alpha}\})$.

Definition 1.9. Let $((Y_{\alpha}, \mathcal{T}_{\alpha}))_{\alpha \in A}$ be topological spaces, let $X := \prod_{\alpha \in A} Y_{\alpha}$, and let $\pi_{\alpha} : X \to Y_{\alpha}$ send $(x_{\beta})_{\beta \in A} \mapsto x_{\alpha}$ for all $\alpha \in A$. The **product topology** on X is the weak topology generated by $(\pi_{\alpha})_{\alpha \in A}$.

The collection $\{\pi_{\alpha}^{-1}[U] : \alpha \in A, U \in \mathcal{T}_{\alpha}\}$ is a subbase for this topology. The collection $\{\bigcap_{j=1}^{n} \pi_{\alpha_{j}}^{-1}[U_{\alpha_{j}}] : \alpha_{1}, \cdots, \alpha_{n} \in A, U_{\alpha_{j}} \in \mathcal{T}_{\alpha_{j}}\}$ is a base for this topology. Our previous topology on $\mathbb{R}^{\mathbb{R}}$ was actually the product topology.