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1 Pointwise Convergence, Countability Axioms, Continuity,
and Weak Topologies

1.1 The topology of pointwise convergence

Last time we had the following example of a topology.

Example 1.1. Let F C R¥, for example, f = C(R). For every m € N, t1,...,t,, € R,
X1,...,Tm € R, and e > 0, define U(ty,...,tm, 1, ..., m,e) :={f € F : |x; — f(t;)| <
eVi < m}. Let £ be the set of all such U (t1,...,tm,Z1,...,Zm, ). We claim that if (f,)nen
is a sequence in F, then f, — f in T(&) iff f,, — f pointwise. Next time, we will show
that this topology is not defined by a metric.

Proposition 1.1. &£ is a base for T.
Proof. We need to check two properties:

1. First, we need |JE = F. Given f € F and t,...,t,, € R, let ; = f(¢;). Then
feU(t,...,tmyx1,...,Tm,¢e) for all e > 0.

2. Let U(t1, - stm, @1y s Tmy &)y U(S1y- oy Sns Y1y -+, Yn,0) € E. Consider f in their
intersection. Choose 1 so smal that (f(¢;) —n, f(t:)+n) C (x; —e,x; +¢) for all i and

same for §. Now f € U(t —1,...,tm, 81,y Sn, f(t1), s f(tm), f(S1)s- -y f(Sn),m),
which is contained in the intersection of the first two sets. O

Proposition 1.2. Let (fn)nen be a sequence in F'. Then f, — f in T iff fn = f pointwise.

Proof. (= ): Pick t € R and € > 0. Consider U(t, f(t),e). There exists ng such that
fn €U, f(t),e) for all n > ng; i.e. |f(t) — fu(t)] < e for all n > ny.
(<= ): Let f € F, and let U be a neighborhood of f. Because £ is a base, there exists

U(ti,...,tm,T1,...,Tm,e) C U containing f. By shrinking ¢ if necessary, we may assume
that x; = f(t;) for every i. We know that f,,(t;) — f(t;). There exists ng such that for all
n > ng, |fo(t)) — f(t;)] < e foralli <m;ie. fr, €U(t1, .. tm, T1y. .y Tim, ). O



1.2 Countability axioms and metrizability

Definition 1.1. A topology T on X is metrizable if it is generated by a metric on X.

There are natural and important topologies that are not metrizable. This is why we
care about point set topology.

Definition 1.2. A topological space (X,T) is first countable at x if it has a countable
base at x. The space is first countable if it is first countable at every .

Definition 1.3. A topological space (X,7T) is second countable if it has a countable
base.

Definition 1.4. A topological space (X, T) is separable if it has a countable dense subset.
Lemma 1.1. A metrizable space is first countable.

Proof. Let p generate 7. Fix z € X. The collection {B(z,r) : r > 0,r € Q} is a
neighborhood base at z. O

Lemma 1.2. The topology of pointwise convergence on RR is not first countable.

Proof. Suppose Uy, Us,... contain f € RF. We may replace if necessary so that U; =
U(tgj),...,tg),xgj),...,x%),sj). Pick € # oo, and pick t € R\ {tl(]) cg>1i=1,...,mj}.
Then U(t, f(t), ) is not contained in U(tgj)7 e ,t%),xgj), e ,x,(%),ej) for all j. O

Corollary 1.1. The topology of pointwise convergence is not metrizable.

1.3 Continuous functions

Definition 1.5. Let (X, 7x) and (Y, 7y) be topological spaces, and let f : X — Y. The
function f is continuous at x if for every neighborhoddo f V' of f(z), there exists a
neighborhood U of x such that f[U] C V. f is continuous if it is continuous at every
point.

Proposition 1.3. f: X — Y is continuous if and only if f~1{U] € Tx for every U € Ty.
Proof. The same proof from metric spaces works here. O

Proposition 1.4. If Ty = T (), then f : X — Y is continuous if and only if f~[U] € Tx
forallU € &.

Proof. The proof is the same as for the analogous statement for o-algebras and measurable
functions. O



Definition 1.6. Let K =R or C, and let (X, 7)) be a topological space. Then B(X, K) is
the set of all bounded functions f : X — K. C(X, K) is the set of all continuous func-
tions f: X — K. BC(X,K) = B(X,K)NC(X, K) is the set of bounded continuous

functions.

Definition 1.7. On B(X, K) or BC(X, K), the uniform norm is || f||,, := sup,cx | f(x)|,
and the uniform metric is p,(f,9) == || f — 9llu-

Proposition 1.5. BC (X, K) is complete with the metric p,.

1.4 The weak and product topologies

Definition 1.8. Let X be a set, let ((Ya, 7a))aca be topological spaces, and let f, : X —
Y, for all @ € A. The weak topology generated by the fo is T (Upea{ /3 [U]: U € Ta}).

Definition 1.9. Let ((Ya,7a))aca be topological spaces, let X := [] .4 Yo, and let 7, :
X — Y, send (z8)geca — xo for all @ € A. The product topology on X is the weak
topology generated by (7a)acA-

The collection {7, [U] : o € A,U € T,} is a subbase for this topology. The collection
{ﬂ;-lzl 7Ta_j1 [Uo,] : o1, -an € A Us; € To,} is a base for this topology. Our previous
topology on RF was actually the product topology.
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